Skip Navigation Links

My Book

Nonlinear Robust Regression

With Application using R.

My New R-Package "nlr" and Book entitled "Robust nonlinear regression with application using R" is released.
  1. The Book is a comprehensive guide for theories and program guide for "nlr" package.
  2. The "nlr" package in R, I created for the book include all computation methods discussed in our book.

  • The Book is available for sale in John Wiley Inc International production website at:
  • the "nlr| package is free available in R-CRAN at the following Link.
https://cran.r-project.org/package=nlr

Package Documentary:
The package which I called "nlr" as abbreviation of "Non-Linear Robust" is set of tools for fitting nonlinear regression models using robust methods, in cllasical model assumtion, autocorrelated errors and heteroscedastic error cases, and include tools to detect outliers.

Fourteen years of my long life passed to create it as the bellow package history:
  1. I started the first programs in S-PLUS at 2005, the objects, numerical methods beside theories I implemented at my Ph.D study during 2006-2009.
  2. From 2009 to 2012 I created new methods in Heteroscedasticity and added to set of SPLUS program, but still it was not written as a package.
  3. In my postdoc from 20012 to 2014 I moved it to R and created first package and documentation files.
  4. From 2014 to March 2018, I completed, corected errors, adjusted for the book, and transfered to LINUX for publishing.
  5. At 14-March 2018 I submitted to CRAN for first time.
  6. At last Package accepted and published at  21-Mar-2018
The package first functions written at 2005 and to 2018 took 14 years of long continuous research and hard working. Without it my theories, and the book is absolutely meaningful. That I can claim is more important than the book. It is because this area is applied and lack computation tools, which without computation tools the theories will not have effect.
During all these years many researchers from several countries contacted me and request the programs, therefore I decided to implement the package and the book.

The package brings the nonlinear regression to a new era, in the sense that it create theories, computation tools, and output of the package is object formats that can be used by researchers not only to fit their own numerical examples but also develop new theories and new computer tools, based on them.

Table of Content

Part One    Theories                                                                           1

1       Robust Statistics                                                                                  3

1.1        Robust Aspects of Data                                                                      3

1.2        Robust Statistics and the Mechanism for Producing Outliers                  4

1.3        Location and Scale Parameters                                                          4

1.3.1          Location Parameter                                                                        5

1.3.2          Scale Parameters                                                                          9

1.3.3          Location and Dispersion Models                                                      10

1.3.4          Numerical Computation of M-estimates                                           11

1.4        Redescending M-Estimates                                                                13

1.5        Breakdown Point                                                                                13

1.6        Linear regression                                                                               16

1.7        Robust Approach in Linear Regression                                                 18

1.8        S-Estimator                                                                                        23

1.9        Least Absolute and Quantile Esimates                                                  25

1.10       Outlier Detection in Linear Regression                                                  26

1.10.1       Studentized and Deletion Studentized Residuals                                27

1.10.2       Hadi Potential                                                                                 27

1.10.3       Elliptic Norm (Cook Distance)                                                         28

1.10.4       Difference in Fits                                                                           28

1.10.5       Atkinson’s Distance                                                                      28

1.10.6       DFBETAS                                                                                      28

2       Nonlinear Models                                                                                 31

2.1        Introduction                                                                                          31

2.2        Basic Concepts                                                                                         32

2.3        Parameter Estimations                                                                             34

2.3.1          Maximum Likelihood Estimators                                                  34

2.3.2          The Ordinary Least Squares Method                                          36

2.3.3          Generalized Least Squares Estimate                                          37

2.4        A Nonlinear Model Example                                                               39

3       Robust Estimators in Nonlinear Regression                                                41

3.1        Outliers in Nonlinear Regression                                                              41

3.2        Breakdown Point in Nonlinear Regression                                               42

3.3        Parameter Estimation                                                                               44

3.4        Least Absolute and Quantile Estimates                                                    44

3.5        Quantile Regression                                                                                 44

3.6        Least Median of Squares                                                                          45

3.7        Least Trimmed Squares                                                                           47

3.8        Least Trimmed Differences                                                                       48

3.9        S-Estimator                                                                                               48

3.10     τ -Estimator                                                                                    50

3.11     MM-Estimate                                                                                            50

3.12     Environmental Data Examples                                                                 53

3.13     Nonlinear models                                                                                      54

3.14       Carbon Dioxide Data                                                                               60

3.15       Conclusion                                                                                               61

4       Heteroscedastic Variance                                                                               65

4.1        Definitions and Notations                                                                         66

4.2        Weighted Regression for the Nonparametric Variance Model                  67

4.3        Maximum Likelihood Estimates                                                          68

4.4        Variance Modeling and Estimation                                                           70

4.5        Robust Multistage Estimate                                                                      72

4.6          Least Squares Based Estimate of Variance Parameters                               73

4.7        Robust Least Squares Based Estimate of the Structural Variance Parameter                                                                                        75

4.8        Weighted M-Estimate                                                                                76

4.9        Chicken Growth Data Example                                                                 77

4.10     Toxicology Data Example                                                                         81

4.11     Evaluation and Comparison of Methods                                                  84

5       Autocorrelated Errors                                                                                      85

5.1        Introduction                                                                                               85

5.2        Nonlinear Autocorrelated Model                                                               86

5.3        The Classic Two-stage Estimator                                                             87

5.4        Robust Two-stage Estimator                                                                     88

5.5        Economy Data                                                                                          89

CONTENTS         5

 5.6        ARIMA(1,0,1)(0,0,1)7 Autocorrelation Function                                 93

6       Outlier Detection in Nonlinear Regression                                                 103

6.1        Introduction                                                                                             103

6.2        Estimation Methods                                                                                104

6.3        Point Influences                                                                                      105

6.3.1          Tangential Plan Leverage                                                          106

6.3.2          Jacobian Leverage                                                                     107

6.3.3          Generalized and Jacobian Leverage for M-Estimator                108

 

6.4

Outlier

Detection Measures

111

 

6.4.1

Studentized and Deletion Studentized Residuals

112

 

6.4.2

Hadis Potential

112

 

6.4.3

Elliptic Norm (Cook Distance)

113

 

6.4.4

Difference in Fits

113

 

6.4.5

Atkinsons Distance

113

 

6.4.6

DFBETAS

114

 

6.4.7

Measures based on Jacobian and MM-Estimators

114

 

6.4.8

Robust Jacobian Leverage and Local Influences

115

 

6.4.9

Overview

116

6.5        Simulation Study                                                                                     117

6.6        Numerical Example                                                                                118

6.7        Variance Heteroscedasticity                                                                   120

6.7.1          Heteroscedastic Variance Studentized Residual                       132

6.7.2          Simulation Study, Hetroscedastic Variance                               133

6.8        Conclusion                                                                                              134

Part Two    Computations                                                             137

7       Optimization                                                                                                   139

7.1        Optimization Overview                                                                            139

7.2        Iterative Methods                                                                                    140

7.3        Wolfe Condition                                                                                142

7.4        Convergence Criteria                                                                              143

7.5        Mixed Algorithm                                                                                143

7.6        Robust M-Estimator                                                                                144

7.7        The Generalized M-Estimator                                                                 145

7.8        Some Mathematical Notation                                                                 145

7.9        Genetic Algorithm                                                                                   146

8       nlr Package                                                                                       147

8.1        Overview                                                                                                 147

8.2        nl.form Object                                                                   148

8.2.1   selfStart Initial Values                                              154

8.3        Model Fit by nlr                                                    155

8.3.1          Output Objects, nl.fitt                           159

8.3.2          Output Objects, nl.fitt.gn                            162

8.3.3          Output Objects, nl.fitt.rob                        164

8.3.4          Output Objects, nl.fitt.rgn                        164

8.4        nlr.control                                                            165

8.5        Fault Object                                                                           167

8.6        Ordinary Least Squares                                                                          168

8.7        Robust Estimators                                                                                  171

8.8        Heteroscedastic Variance Case                                                                    174

8.8.1          Chicken Data Example                                                              175

8.8.2          National Toxicology Study Program Data                                  179

8.9        Autocorrelated Errors                                                                             180

8.10     Outlier Detection                                                                                     191

8.11     Initial Values and Self-start                                                                     198

 

9

Robust Nonlinear Regression in R

205

 

9.1   Lakes Data Examples

205

 

9.2   Simulated Data Examples

208

A

”nlr” Database

215

A.1   Data Set used in The Book                                                                     215

A.1.1

Chicken Growth Data

215

A.1.2

Environmental Data

216

A.1.3

Lakes Data

217

A.1.4

Economy Data

217

A.1.5

National Texicology Program(NTP) Data

218

A.1.6

Cow Milk Data

219

A.1.7

Simulated Outliers

219

A.1.8

Artificially Contaminated Data

220

A.2

Nonlinear Regression Models

221

A.3

Robust Loss functions Data Bases

221

A.4

Heterogeneous Variance Models

222

Description

The first book to discuss robust aspects of nonlinear regression—with applications using R software

Robust Nonlinear Regression: with Applications using R covers a variety of theories and applications of nonlinear robust regression. It discusses both parts of the classic and robust aspects of nonlinear regression and focuses on outlier effects. It develops new methods in robust nonlinear regression and implements a set of objects and functions in S-language under SPLUS and R software. The software covers a wide range of robust nonlinear fitting and inferences, and is designed to provide facilities for computer users to define their own nonlinear models as an object, and fit models using classic and robust methods as well as detect outliers. The implemented objects and functions can be applied by practitioners as well as researchers. 

The book offers comprehensive coverage of the subject in 9 chapters: Theories of Nonlinear Regression and Inference; Introduction to R; Optimization; Theories of Robust Nonlinear Methods; Robust and Classical Nonlinear Regression with Autocorrelated and Heteroscedastic errors; Outlier Detection; R Packages in Nonlinear Regression; A New R Package in Robust Nonlinear Regression; and Object Sets.

  • The first comprehensive coverage of this field covers a variety of both theoretical and applied topics surrounding robust nonlinear regression
  • Addresses some commonly mishandled aspects of modeling
  • R packages for both classical and robust nonlinear regression are presented in detail in the book and on an accompanying website
Robust Nonlinear Regression: with Applications using R is an ideal text for statisticians, biostatisticians, and statistical consultants, as well as advanced level students of statistics. 

My Books Page

By Hossein Riazoshams

"nlr" R-package (Non-Linear Robust)

Coming Aug 2018
Skip Navigation Links