Skip Navigation Links

My Comming Book

Nonlinear Robust Regression: Methods and Application

With Practical Guides for R.

This book is the results of serial researches from 2004 till 2014. During 10 years of dense research i have developed a series of theories and a package in SPLUS/R nemd "nlr".

Publisher:   John Wiley and Sons.

Approximate finishing Approximatly released 27 Feb 2015.

nlr package is implemented for the book

Data Set used in the book

             Contents of the book 
PartOne: Theories
Chapter 1.     Robust Statistics  
1.1.   Robust Aspects of Data
1.2.    Robust Statistics and the Mechanism for Producing Outliers
1.3  Location and Scale Parameters
1.3.1   Location Parameter 
1.3.2  Scale Parameters
1.3.3 Location and Dispersion Models
1.3.4   Numerical Computation of M-estimates
1.4   Redescending M-Estimates
1.5.   Breakdown Point  
1.6.   Linear regression
1.7 Robust Approach in Linear Regression
1.8 S-Estimate
1.9 Least Absolute and Quantile Esimates
1.10 Outlier Detection in Linear Regression 
1.10.1  Studentized and Deletion Studentized Residuals
1.10.2  Hadi Potential
1.10.3 Elliptic Norm (Cook Distance) 
1.10.4 Difference in Fits
1.10.5 Atkinson’s Distance  
1.10.6  DFBETAS
Chapter 2. Nonlinear models
2.1.Introduction to nonlinear modelling.
2.2. Least Square (and inferences)
2.3.Generalized Least Square (and inferences)
2.4.MLE (and inferences)
2.5.M and MM estimates (and inferences)
2.6.Generalized M estimate (and inferences)
2.7.Robust Nonlinear Modelling approach.
2.8.Preliminary test estimation. 
2.9 t-distribution assumption for error terms. (t-regression) optional
 
Chapter 3.            Heteroscedastic variance
Non constant variance problem will be discussed in this chapter. In each method, three different cases will be discussed. 
3.1.Introduction to Variance heterogeneity
3.1.1.      Case 1: Numerical values as the weights
3.1.2.      Case 2; Variance model as a parametric function of predictors.
3.1.3.      Case 3: Variance model as a parametric function of nonlinear model function.
3.2.Weighted estimates
3.3.Generalized Least Square
3.4.MLE's
3.5.Chi square based estimate
3.6.Quasi likelihood
3.7.Multi stage estimate
3.9.Inferences. 
Chapter 4.            Authocorelated errors
This chapter will handle the autocorelated error cases such as AR and ARIMA. Classic and Robust methods will be explained, such as two stage estimates.
4.1 AR
4.2 ARIMA
Chapter 5.            Outlier Detection. 
This chapter will discuss about how to detect outliers, statistics measure of outlier detection will be explained and will be shown how extend from linear to nonlinear and how should be combined with robust methods; new methods in outlier detection will be presented and illustrated with real-life data.
5.1. Tangential Leverages.
5.2.Jacobian Leverages.
5.3.Robust Jacobian Leverage.
5.4.Introducing outlier detection Measures
5.5.New Outlier detection measures.
5.6. Outlier detection for authocorrelated error case
5.7.Outlier detection for heteroscedastic error case
Chapter 6.            Nonlinear Mixed Models, Classic and Robust. 
In this chapter new robustified methods for nonlinear mixed models will be explained.
6.1. Two Stage estimate
6.2.Robust two stage estimate
6.3. Application in longitudinal data, (optional, just if can develop methods or find enough materials)
Chapter 7.            Optimization. 
7.1.Derivative based methods
7.2.Derivative free methods
Chapter 8.            R packages in Nonlinear regression. 
In this chapter available packages of R in nonlinear regression and Robust will be explained. 
8.1."nlreg" package
8.2. “nlr” function
8.3. "robustbase" package
Chapter 9.            A New R package in Robust Nonlinear Regression. 
In this chapter a new R package will be proposed.
9.1. Nonlinear Objects
8.2. Fitting classic and robust models
8.3. Heteroscedastic error.
8.4. Autocorrelated errors.
8.5. Outlier Detection.
8.6. Nonlinear Statistical Inference.
8.7. Package Comparisons.
8.8. Advance Nonlinear Object Programing
8.8.1              Defining New Likelihood Function
8.8.2              Fitting Classic and Robust methods
8.8.3              Heteroscedastic error
8.8.4              Autocorelated error
8.8.5              Outlier detection
8.9. Robust Nonlinear Mixed models
Chapter 10.            Preliminary Discussion in Bayesian Nonlinear regression models. (optional, just if can develop methods or find enough materials)
Robust Bayesian Nonlinear regression models are not well developed. In this chapter some basics, according to the advances in this field will be explained.
10.2.Theories
10.2.WinBUGS examples
Chapter 11. Neural Network nonlinear regression
11.1 Theories
11.2 Applications
Chapter 12. Genetic algorithm
12.1 Theories
12.2 Application
Apendix A: Mathematics Fundation, in this Appendix the mathematical background required in the book will be explained, such as Matrix Algebra.
 
Apendix B: Objects
 In this Section the data set used in the book, and nonlinear models including, variance functions, robust functions, will be discussed.
B.1 Data Set
B.2  Nonlinear Models, illustrating some nonlinear models.
B.3  Variance Function Models
B.4 Robust Functions